Обложка Компьютерная пульсоксиметрия в диагностике нарушений дыхания во сне: учебное пособие

Компьютерная пульсоксиметрия в диагностике нарушений дыхания во сне: учебное пособие

Оценка книги
  • 100
5 67
Аннотация

В пособии описаны физиологические, технические и клинические аспекты компьютерной пульсоксиметрии. Значительное внимание уделено интерпретации данных мониторинга сатурации во сне в различных клинических ситуациях. Рассмотрены вопросы организации массового скрининга расстройств дыхания во сне с использованием компьютерной пульсоксиметрии.Пособие предназначено для врачей-терапевтов, пульмонологов, неврологов, кардиологов, эндокринологов, оториноларингологов, реаниматологов и других специалистов, в работе которых может потребоваться мониторинг сатурации во сне, а также для студентов медицинских вузов.

Читать "Компьютерная пульсоксиметрия в диагностике нарушений дыхания во сне: учебное пособие" онлайн

Введение

За сутки человек делает около 20 000 вдохов, вдыхая 10 м3 воздуха. Сердце сокращается за то же время около 100 000 раз и прокачивает 6 тонн крови. Такая титаническая работа нужна для обеспечения единственного показателя – насыщения гемоглобина артериальной крови кислородом (сатурация), который является важнейшим параметром жизнедеятельности организма.

Мы можем прожить без пищи около месяца, без воды – около 7 дней. В организме создаются запасы жира и жидкости на случай отсутствия пищи и воды. К сожалению, природа не предусмотрела возможности накопления запасов кислорода в организме. Так, уже через 3 минуты отсутствия дыхания полностью истощается запас кислорода в организме, и человек умирает.

Даже небольшие нарушения работы легких и сердца постепенно приводят к развитию хронического недостатка кислорода в организме (гипоксемия), который отрицательно сказывается практически на всех органах и системах организма. Человека беспокоят головные боли, отмечается снижение работоспособности, ухудшение памяти и внимания, сон становится прерывистым и неосвежающим, появляется дневная сонливость. Значительно увеличивается риск развития артериальной гипертонии, нарушений ритма сердца, инфарктов и инсультов.

Обычно первые признаки гипоксемии появляются при физической нагрузке или во время сна. Очевидно, что работа мышц приводит к увеличению потребления кислорода. Если легкие или сердце не способны обеспечить растущую потребность организма в кислороде, то развивается гипоксемия.

Сон провоцирует развитие гипоксемии, поскольку в это время межреберные мышцы выключаются из акта дыхания, и работает одна диафрагма. Если же у человека имеется избыточная масса тела, то в горизонтальном положении избыточные отложения жира в области живота давят на диафрагму, смещают ее в сторону легких и существенно ограничивают ее подвижность. Легкие не могут расправиться и не обеспечивают необходимый уровень вентиляции.

Кроме этого во время сна возрастает бронхиальное сопротивление, что также отрицательно сказывается на функции дыхания. Нарушение бронхиальной проходимости ночью особенно выражено у пациентов с бронхиальной астмой, хронической обструктивной болезнью легких (ХОБЛ), хроническим бронхитом, эмфиземой и пневмосклерозом.

Закономерно ухудшаются показатели насыщения крови кислородом во время сна у больных с недостаточностью кровообращения. Характерным проявлением этих нарушений является неравномерное дыхание с циклическими апноэ центрального генеза (например, дыхание Чейна – Стокса).

У полных людей во сне часто встречается еще одно опасное состояние – периодическое спадение дыхательных путей на уровне глотки, которая сдавлена снаружи жиром. Данное заболевание называется синдром обструктивного апноэ сна (СОАС) и проявляется храпом, периодическими остановками дыхания во сне с последующими громкими всхрапываниями. Каждая остановка дыхания, в свою очередь, приводит к кратковременному выраженному падению насыщения гемоглобина крови кислородом – эпизоду десатурации. За ночь может наблюдаться несколько сотен таких эпизодов.

В целом распространенность клинически значимых нарушений дыхания во сне достигает 15 % у пациентов терапевтического профиля в стационаре [3–5]. В настоящее время стандартными методами диагностики нарушений дыхания во сне являются полисомнография и кардио-респираторный мониторинг. Однако их применение ограничено высокой стоимостью исследований и малой доступностью оборудования для практического здравоохранения.

В последние годы в мире широкое распространение получила компьютерная пульсоксиметрия (МКП), позволяющая мониторировать сатурацию во время ночного сна. МКП является простым и эффективным методом скрининговой диагностики расстройств дыхания во сне, который показал высокую эффективность при минимальных затратах материальных и человеческих ресурсов. В пособии представлены современные взгляды на возможности МКП в скрининговой диагностике нарушений дыхания во сне.

Список сокращений

АД – артериальное давление

ДКТ – длительная кислородотерапия

ИАГ – индекс апноэ / гипопноэ

ИД – индекс десатураций

МКП – мониторинговая компьютерная пульсоксиметрия

ОФД – отделение функциональной диагностики

ПСГ – полисомнография

СОАС – синдром обструктивного апноэ сна

ХДН – хроническая дыхательная недостаточность

ХНГ – хроническая ночная гипоксемия

ХОБЛ – хроническая обструктивная болезнь легких ЧСС – частота сердечных сокращений

ЭКГ – электрокардиография

BiLevel – неинвазивная вспомогательная вентиляция терапия легких двухуровневым положительным давлением

CPAP – неинвазивная вспомогательная вентиляция терапия легких постоянным положительным давлением

SpO2 – насыщение гемоглобина артериальной крови кислородом, измеренное неинвазивным методом

Основы пульсоксиметрии

Основным методом неинвазивного измерения сатурации является пульсоксиметрия – метод измерения процентного содержания оксигемоглобина в артериальной крови (SpO2). В клинической практике предлагается пользоваться терминами «насыщение артериальной крови кислородом» или «оксигенация артериальной крови», а сам параметр SpO2 обозначать термином «сатурация». В отечественной литературе существует некоторая путаница, обусловленная употреблением аббревиатур SpO2 и SaO2. Употреблять сокращение SpO2 следует в том случае, когда речь идет о сатурации, измеренной неинвазивным методом, поскольку в этой ситуации результат измерения зависит от особенностей метода. Например, SpO2 при наличии в крови карбоксигемоглобина будет выше истинной величины сатурации. Термин SaO2 следует употреблять для обозначения истинной сатурации, измеренной лабораторным методом [1].

Работа пульсоксиметра основана на способности гемоглобина, связанного (HbO2) и не связанного (Hb) с кислородом, абсорбировать свет различной длины волны. Оксигенированный гемоглобин больше абсорбирует инфракрасный свет, деоксигенированный гемоглобин больше абсорбирует красный свет. В пульсоксиметре установлены 2 светодиода, излучающих красный и инфракрасный свет. На противоположной части датчика располагается фотодетектор, который определяет интенсивность падающего на него светового потока. Измеряя разницу между количеством света, абсорбируемого во время систолы и диастолы, пульсоксиметр определяет величину артериальной пульсации. Сатурация рассчитывается как соотношение количества HbO2 к общему количеству гемоглобина, выраженное в процентах: